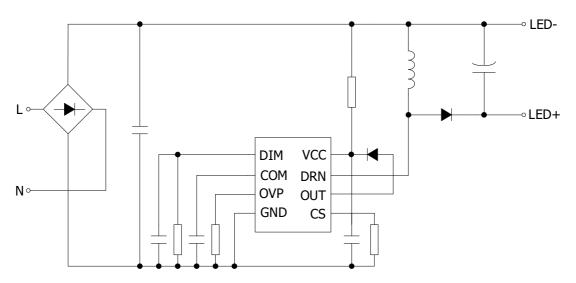


AT8618

Features

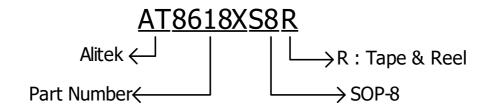
- 220/230/240Vac input voltage applications
- Patented dimmable control technologies
- Supports Leading and Trailing edge dimmers
- Supports Multiple lamps in a parallel
- High power factor
- Low THDi
- Low BOM cost
- Fast Startup Time
- W/O aux-winding to Vcc
- Output Over Voltage Protection (OVP)
- Output Short Protection (OSP)
- Cycle by cycle Over-current Protection (OCP)
- Internal Over temperature Protection (OTP)
- Thermal Foldback Protection (TFP)
- SOP-8 Package


Description

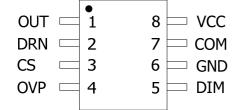
AT8618 is a buck boost topology LED Driver integrated 650V MOS-FET for dimmable application. It has excellent performance with High power factor, low THDi and high efficiency. It cans support leading and trailing edge dimmers and also multiple lamps in a parallel. AT8618 provides full range of protections with low BOM cost.

AT8618 uses Alitek Proprietary patented dimming technologies to make low component counts and high performance possible.

Typical Schematic


1

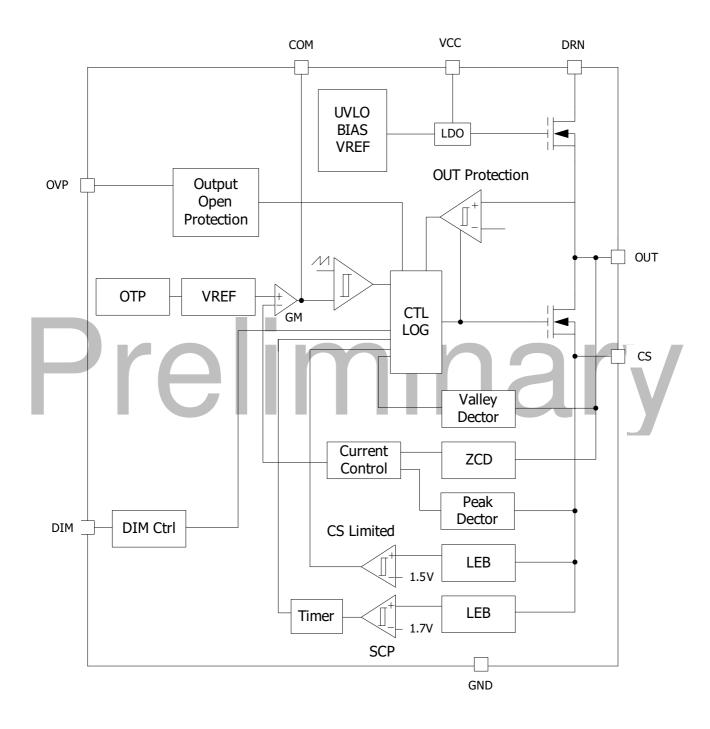
AT8618


Ordering Information

Part Number	Package	MOQ
AT8618BS8R	SOP8	3K/Reel
AT8618CS8R	SOP8	3K/Reel
AT8618DS8R	SOP8	3K/Reel
AT8618ES8R	SOP8	3K/Reel

2

Pining Information



Pin	Symbol	Description						
1	OUT	Connected Internal source of MOS						
2	DRN	Drain of high side internal MOS						
3	CS	Current sense Input						
4	OVP	Setting OVP trigger voltage						
5	DIM	Dimming control						
6	GND	Ground						
7	COM	Loop compensation						
8	VCC	Supply Voltage						

AT8618

Function Block Diagram

3

AT8618

Absolute Maximum Ratings

Symbol	Definition	Min.	Max.	Units
Vcc	Supply Voltage	-0.3	17	
V_D	Voltage on DRN pin	-0.3	650	
OVP	Voltage on OVP pin			V
Vcs	Voltage on CS pin	-0.3	7.0	
V_{COMP}	Voltage on COMP pin			
T _J	Junction Temperature	-40	150	
T_{STG}	Storage Temperature	-60	150	°C
T_LEAD	Lead Temperature (Soldering 10Sec)		260	

Electronical Characteristics (VCC= 15V, TA = +25°C, unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Supply Vo	oltage on Vcc Pin					
I _{startup}	Start up Current		-	60	-	uA
I _{operating}	Operating Current	(Fosc=16kHz)	-	300	-	uA
UVLO _(on)	Turn-on threshold		11	12	13	V
UVLO _(off)	Turn-off threshold		5.5	6.5	7.5	V
VCC_{clamp}	VDD clamp voltage on Vcc Pin		14	15	16	V
Voltage F	eedback on Sensing Pin					
V _{CS}	Feedback reference voltage		294	300	306	mV
V _{ISEN MAX}	Current limit reference voltage		1.4	1.5	1.6	V
I _{LEB}	Leading Edge Blanking Time			600		nS
V_{SCP}	SCP reference voltage		1.6	1.7	1.8	V
Ton _{min}	Min ON Time		-	610	-	nS
Loop Con	npensation on Comp pin					W
V_{st}	COMP start-up voltage		-	1	-	V
I _{SOURCE}	COMP Source Current		-	6	-	uA
Gm	Tran-Conductance	ΔI_COMP 30mV	-	20	-	uS
Ton _{max}	Max internal ON Time		-	18	-	us
Toff _{max}	Max internal OFF Time		-	90	-	us
Over Volt	age Protection on ROVP pin					
V_{ovp}	Reference ROVP voltage		0.4	0.5	0.6	V
TSH	OVP shutdown time		-	300	-	mS
T _{ovp}	OVP shutdown OFF Time	Rovp=100k and Vcs=300mV	-	11.2	-	us
V _{ovp_dis}	OVP shutdown disable threshold		90	100	110	mV
Driver on	DRN pin	•				
Rds _{on}	Rds _{on}		-	1.1	-	Ohm
V _{OUT PRO}	OUT protection voltage	VCS<0.1V	-	1.1	-	V
	ed MOS on DRN pin		•		•	
V_{ds}			650	-	-	V
		AT8618BS8R	-	1.2	-	
P/N	Dde	AT8618CS8R	-	4.7	-	Obar
	Rds _{on}	AT8618DS8R	-	9	-	Ohm
		AT8618ES8R	-	14	-	
OTP Prot	ection on Chip		•			
T _{Fold}	Foldback Temperature _(Note1)		-	140	-	°C
T _{SD}	Thermal shutdown		-	160	-	°C
ΔT_{SD}	Thermal shutdown hysteresis		-	60	-	°C

 $\label{eq:Note} Note (1): Design \ guaranteed, \ are \ not \ test \ in \ production$

AT8618

Vcc Pin

An UVLO comparator with hysteresis is implemented in AT8618. Once VCC rise up to UVLOon, the internal blocks start to work. And it stops to work as VCC drops down to be lower than UVLOoff. The level of UVLOon and UVLOoff are designed as 12V and 6.5V respectively as shown in Fig.1.

VCC capacitor is 1uF~4.7uF recommended.

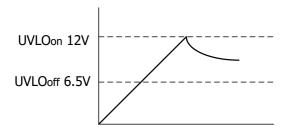


Fig.1

CS pin

In AT8618, the current of the MOSFET is detected through the current sense (CS) pin. If the level of CS pin is higher than VISEN_MAX level, the protection will be triggered to turn off the output driver. This cycle-by-cycle current limit function protects the system from being overload. And the VISEN_MAX level is 1.5V.

Output Short Protection on CS pin

Once the LED short-circuit condition occurs, System will work in minimum turn on time (600ns) and maximum turn off time (90us) condition which lower the overall energy to keep the system safe.

Comp Pin

Loop compensation on COMP pin. The capacitor is 0.1uF~1uF recommended.

Output Open Protection on OVP pin

To prevent system from being damaged, it can set a trigger level for protection.

If the output voltage rises up to a higher level than OVP trigger level programmed by an external resister at OVP pin, the output driver will be turned off immediately to stop the switching and auto recovery by UVLOoff or TSH protection time finished.

Protection Mode

Protections mode are described in AT8618 as below Fig.2

Function	Protection Mode
OVP	Auto Recovery
Output Open	Auto Recovery
Output Short	Auto Recovery
Internal OTP	Auto Recovery

Fig.2

Thermal Foldback function

To prevent the system breaking down by high temperature, AT8618 sets T_{Fold} at +140°C typical. When the junction temperature is higher than +140°C, the output current will linearly decrease to 60% of maximum output current value and trigger over temperature protection(OTP) which will shut down the system. The system will recover when IC temperature reduce to 60°C (guaranteed by design).

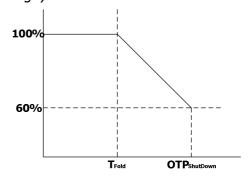
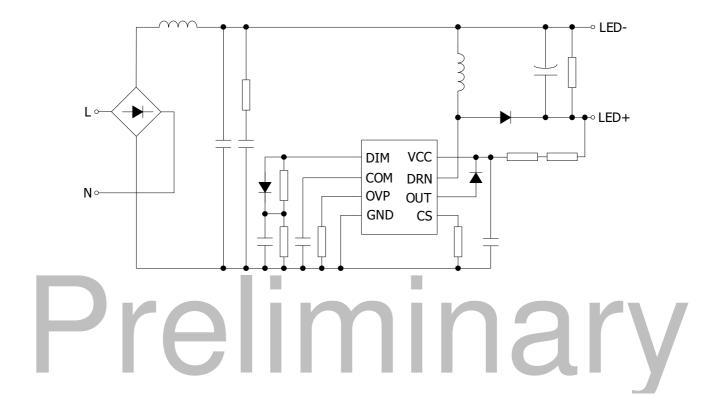


Fig.3

REV 1.0

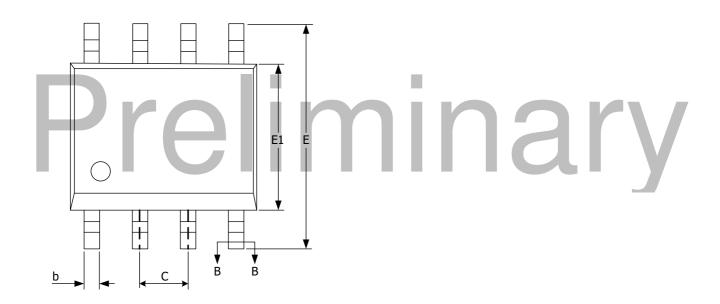

5

AT8618

Application Information

60V/140mA application @230Vac




6

AT8618

Package Information SOP-8

尺寸标示

Symbol	Α	A1	A2	А3	b	b1	С	c1	D	Е	E1	е	h	L	L1	θ
mm -	-	0.100	1.3	0.6	0.39	0.38	0.21	0.19	4.7	5.8	3.7	1.27	0.25	0.5	1.05	0°
	1.75	0.225	1.5	0.7	0.48	0.43	0.26	0.21	5.1	6.2	4.1	BSC	0.50	0.8	BSC	8°