Single Stage Flyback and PFC Controller with Primary Side Control for LED Lighting and Multiple Dimming Mode Option
 Preliminary Specification

General Description

The SY5882 is a single stage Flyback and PFC controller targeting at LED Dimming applications， which can achieve up to 5% dimming level and high precision for all loading range．It is a primary side controller without applying any secondary feedback circuit for low cost，and drives the converter in the quasi－resonant mode to achieve higher efficiency．It keeps the converter in constant on time operation to achieve high power factor．

Ordering Information

Ordering Number	Package type	Note
SY5882FAC	SO8	----

Features

－ $5.5 \% \sim 100 \%$ Dimming Range．
－CV mode for Bias supply at＜5\％Dimming Signal．
－Primary side control eliminates the opto－coupler．
－Valley turn－on of the primary MOSFET to achieve low switching losses
－ 0.3 V primary current sense reference voltage leads to a lower sense resistance thus a lower conduction loss．
－Internal high current MOSFET driver：0．19A sourcing and 0.63 A sinking
－Low start up current： $34 \mu \mathrm{~A}$ typical
－Reliable short LED and Open LED protection
－Power factor＞0．90 with single－stage conversion．（Analog dimming only）
－Compact package：SO8
Applications
－LED Dimming

Typical Applications

Figure．1a Analog output with PWM dimming signal

Figure．1b Analog output with 0－1．5V dimming signal

Figure．1c Dimming curve of Analog dimming

SIIERGY

Pinout（top view）

（SO8）
Top Mark：BCI $x y z$（device code：BCI，$x=y e a r$ code，$y=$ week code，$z=$ lot number code）

Pin Name	Pin number	Pin Description
COMP	1	Loop compensation pin．Connect a RC network across this pin and ground to stabilize the control loop．
ZCS	2	Inductor current zero－crossing detection pin．This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point．This pin also provides over voltage protection，line regulation modification function and CV detection simultaneously．If the voltage on this pin is above $\mathrm{V}_{\text {Zcs，ovp }}$ ，the IC would enter over voltage protection mode．Good line regulation can be achieved by adjusting the upper resistor of the divider．
ISEN	3	Current sense pin．Connect this pin to the source of the primary switch．Connect the sense resistor across the source of the primary switch and the GND pin． （current sense resister $R_{S}: R_{S}=k \frac{V_{\text {REF }} \times N_{\text {PS }}}{I_{\text {OUT }}}, k=0.167$ ）
GND	4	Ground pin
DRV	5	Gate driver pin．Connect this pin to the gate of primary MOSFET．
VIN	6	Power supply pin．This pin also provides output over voltage protection along with ZCS pin．
ADIM	7	Bypass this pin to GND with enough capacitance to hold on internal voltage reference．
PWM	8	PWM dimming input pin，this pin detects the PWM dimming signal

SIIERGY

Absolute Maximum Ratings（Note 1）
VIN，DRV $-0.3 \mathrm{~V} \sim 25 \mathrm{~V}$
Supply current $\mathrm{I}_{\text {VIN }}$ 7 mA 7 mA
ZCS，PWM $-0.3 \mathrm{~V} \sim 23 \mathrm{~V}$
ADIM $-0.3 \mathrm{~V} \sim 15 \mathrm{~V}$
ISEN，COMP －0．3～ 3.6 V
Power Dissipation，＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SO8 1．1W
Package Thermal Resistance（Note 2）
SO8，$\theta_{\text {JA }}$ $88^{\circ} \mathrm{C} / \mathrm{W}$
SO8，$\theta_{\text {JC }}$ $45^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ．） $260^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Recommended Operating Conditions（Note 3）VIN，DRV

Block Diagram

Figure． 3 Block Diagram

SIIERGY

Electrical Characteristics
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}\right.$（Note 3）， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified）

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Power Supply Section						
Input voltage range	$\mathrm{V}_{\mathrm{VIN}}$		8.5		22	V
VIN turn－on threshold	$\mathrm{V}_{\mathrm{VIN}, 0 \mathrm{~N}}$		19	20	22	V
VIN turn－off threshold	$\mathrm{V}_{\mathrm{VIN}, \text { OfF }}$		7.5	8.0	8.5	V
VIN OVP voltage	$\mathrm{V}_{\text {VIN，OVP }}$		22	23	24	V
Start up Current	$\mathrm{I}_{\text {ST }}$	$\mathrm{V}_{\mathrm{VIN}}<\mathrm{V}_{\mathrm{VIN}, \text { OfF }}$		34		$\mu \mathrm{A}$
Operating Current	$\mathrm{I}_{\mathrm{VIN}}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=15 \mathrm{kHz}$		1		mA
Shunt current in OVP mode	$\mathrm{I}_{\mathrm{VIN}, \mathrm{OVP}}$	$\mathrm{V}_{\mathrm{VIN}}>\mathrm{V}_{\mathrm{VIN}, \mathrm{OVP}}$		7		mA
Error Amplifier Section						
Internal reference voltage	$\mathrm{V}_{\text {REF }}$		0.294	0.3	0.306	V
Current Sense Section						
Current limit reference voltage	$\mathrm{V}_{\text {ISEN，MAX }}$			0.45		V
ZCS pin Section						
ZCS pin OVP voltage threshold	$\mathrm{V}_{\mathrm{ZCS}, \mathrm{OVP}}$			1.5		V
COMP Section						
Pre－charge value	$\mathrm{V}_{\text {COMP．PRE }}$			0.9		V
Gate Driver Section						
Gate driver voltage	$\mathrm{V}_{\text {Gate }}$			$\mathrm{V}_{\mathrm{VIN}}$		V
Maximum source current	$\mathrm{I}_{\text {SOURCE }}$			0.19		A
Minimum sink current	$\mathrm{I}_{\text {SINK }}$			0.63		A
Max ON Time	$\mathrm{T}_{\text {ON，MAX }}$	$\mathrm{V}_{\text {СомP }}=1.5 \mathrm{~V}$		16		Ms
Min ON Time	$\mathrm{T}_{\text {ON，MIN }}$			500		ns
Max OFF Time	T ${ }_{\text {OFF，MAX }}$			120		us
Min OFF Time	$\mathrm{T}_{\text {OFF，MIN }}$			1.5		us
Maximum switching frequency	$\mathrm{f}_{\text {MAX }}$			120		kHz
ADIM function Section						
ADIM Enable ON	$\mathrm{V}_{\text {AdIM．ON }}$			0.075		V
ADIM EnableOFF	$\mathrm{V}_{\text {Adim，OFF }}$			0.037		V
Analog dimming effective range	$\mathrm{V}_{\text {ADIM，Dimming }}$		0.075		1.35	V
Thermal Section						
Thermal Fold back Temperature	T_{FB}			150		${ }^{\circ} \mathrm{C}$
Thermal shut down Temperature	$\mathrm{T}_{\text {SD }}$			160		${ }^{\circ} \mathrm{C}$
PWM function Section						
PWM ON current	$\mathrm{V}_{\text {PWM，ON }}$			1.5		V
PWM OFF current	$\mathrm{V}_{\text {PWM，OFF }}$			$\mathrm{V}_{\text {PWM，ON }}-0.1$		V

Note 1：Stresses beyond the＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only．Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
Note 2：Θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51－3 thermal measurement standard．Test condition：Device mounted on 2＂x 2＂FR－4 substrate PCB， 2oz copper，with minimum recommended pad on top layer and thermal vias to bottom layer ground plane．
Note 3：Increase VIN pin voltage gradually higher than $\mathrm{V}_{\text {VIN，ON }}$ voltage then turn down to 12 V ．

SO8 Package Outline \＆PCB Layout Design

Recommended Pad Layout

Notes：All dimensions are in millimeters．
All dimensions don＇t include mold flash \＆metal burr．

